Научный журнал ФГБУН ВолНЦ РАН
(сетевое издание)
RuEn

рубрика "Кормопроизводство, кормление сельскохозяйственных животных и технология кормов"

Влияние пробиотического штамма Bifidobacterium Longum на микробиом кишечника карпа

Аринжанов А.Е.

Том 6, №1, 2023

Аринжанов А.Е. Влияние пробиотического штамма Bifidobacterium Longum на микробиом кишечника карпа // АгроЗооТехника. Т. 6. № 1. DOI: 10.15838/alt.2023.6.1.2 URL: http://azt-journal.ru/article/29535

DOI: 10.15838/alt.2023.6.1.2

  1. Фисинин В.И., Сурай П. (2013). Кишечный иммунитет у птиц: факты и размышления (обзор) // Сельскохозяйственная биология. Т. 48. № 4. С. 3–25. DOI: 10.15389/agrobiology.2013.4.3rus
  2. Ali U., Naveed S., Qaisrani S.N. [et al.] (2022). Characteristics of essential oils of Apiaceae family: Their chemical compositions, in vitro properties and effects on broiler production. The Journal of Poultry Science, 59 (1), 16–37. DOI: 10.2141/jpsa.0210042
  3. Aly S.M., Abd-El-Rahman A.M., John G., Mohamed M.F. (2008). Characterization of some bacteria isolated from Oreochromis niloticus and their potential use as probiotics. Aquaculture, 277, 1–6. DOI: 10.1016/j.aquaculture.2008.02.021
  4. Chakraborty S.B., Hancz C. (2011). Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Reviews in Aquaculture, 3, 103–119. DOI: 10.1111/J.1753-5131.2011.01048.X
  5. Das A., Nakhro K., Chowdhury S., Kamilya D. (2013). Effects of potential probiotic Bacillus amyloliquefaciens [corrected] FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish Shellfish Immunol, 35 (5), 1547–1553. DOI: 10.1016/j.fsi.2013.08.022
  6. Fiorella K.J., Okronipa H., Baker K., Heilpern S. (2021). Contemporary aquaculture: Implications for human nutrition. Current Opinion in Biotechnology, 70, 83–90. DOI: 10.1016/j.copbio.2020.11.014
  7. Huang J.B., Wu Y.C., Chi S.C. (2014). Dietary supplementation of Pediococcus pentosaceus enhances innate immunity, physiological health and resistance to Vibrio anguillarum in orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol, 39 (2), 196–205. DOI: 10.1016/j.fsi.2014.05.003
  8. Kashinskaya E.N., Belkova N. L., Izvekova G.I. [et al.] (2015). A comparative study on microbiota from the intestine of Prussian carp (Carassius gibelio) and their aquatic environmental compartments, using different molecular methods. Journal of Applied Microbiology, 119 (4), 948–961. DOI: 10.1111/jam.12904
  9. Kim D., Beck B.R., Heo S.B. [et al.] (2013). Lactococcus lactis BFE920 activates the innate immune system of olive flounder (Paralichthys olivaceus), resulting in protection against Streptococcus iniae infection and enhancing feed efficiency and weight gain in large-scale field studies. Fish & Shellfish Immunology, 35 (5), 1585–1590. DOI: 10.1016/j.fsi.2013.09.008
  10. Klasing K.C. (2007). Nutrition and the immune system. British Poultry Science, 48, 525–537. DOI: 10.1080/00071660701671336
  11. Kvan O.V., Gavrish I.A., Lebedev S.V. [et al.] (2018). Effect of probiotics on the basis of Bacillus subtilis and Bifidobacterium longum on the biochemical parameters of the animal organism. Environmental Science and Pollution Research, 25 (3), 2175–2183. DOI: 10.1007/s11356-017-0534-9
  12. Laptev G.Y., Filippova V.A., Kochish I.I. [et al.] (2019). Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella Enteritidis and Fed a Phytobiotic. Animals (Basel), 9 (9), 615. DOI: 10.3390/ani9090615.
  13. Liu H., Li J., Guo X., Liang Y., Wang W. (2018). Yeast culture dietary supplementation modulates gut microbiota, growth and biochemical parameters of grass carp. Microbial biotechnology, 11 (3), 551–565. DOI: 10.1111/1751-7915.13261
  14. Newaj-Fyzul A., Austin B. (2015). Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. Journal of Fish Diseases, 38 (11), 937–955. DOI: 10.1111/jfd.12313
  15. Pan C.-Y., Wang Y.-D., Chen J.-Y. (2013). Immunomodulatory effects of dietary Bacillus coagulans in grouper (Epinephelus coioides) and zebrafish (Danio rerio) infected with Vibrio vulnificus. Aquaculture International, 21, 1155–1168. DOI: 10.1007/s10499-012-9619-0
  16. Sorroza L., Padilla D., Acosta F. [et al.] (2012). Characterization of the probiotic strain Vagococcus fluvialis in the protection of European sea bass (Dicentrarchus labrax) against vibriosis by Vibrio anguillarum. Veterinary Microbiology, 155 (2–4), 369–373. DOI: 10.1016/j.vetmic.2011.09.013
  17. Sorroza L., Real F., Acosta F. [et al.] (2013). A probiotic potential of Enterococcus gallinarum against Vibrio anguillarum infection. Fish Pathology, 48, 9–12. DOI: 10.3147/jsfp.48.9
  18. Ten Doeschate K.I., Coyne V.E. (2008). Improved growth rate in farmed Haliotis midae through probiotic treatment. Aquaculture, 284, 174–179. DOI: https://doi.org/10.1016/j.aquaculture.2008.07.018
  19. Vine N.G., Leukes W.D., Kaiser H. (2006). Probiotics in marine larviculture. FEMS Microbiology Reviews, 30 (3), 404–427. DOI: 10.1111/j.1574-6976.2006.00017.x
  20. Zakharova Y.R., Galachyants Y.P., Kurilkina M.I. [et al.] (2013). The structure of microbial community and degradation of diatoms in the deep nearbottom layer of Lake Baikal. PLoS One, 8 (4), e59977. DOI: 10.1371/journal.pone.0059977
  21. Zhang B., Zhuang X., Guo L., McLean R.J., Chu W. (2019). Recombinant N-acyl homoserine lactone-Lactonase AiiAQSI-1 Attenuates Aeromonas hydrophila virulence factors, biofilm formation and reduces mortality in crucian carp. Marine drugs, 17 (9), 499. DOI: 10.3390/md17090499
  22. Zhang Y., Zhang P., Shang X., Lu Y., Li Y. (2021). Exposure of lead on intestinal structural integrity and the diversity of gut microbiota of common carp. Comparative Biochemistry and Physiology – Part C: Toxicology & Pharmacology, 239, 108877. DOI: 10.1016/j.cbpc.2020.108877
  23. Zhou S., Zhang A., Yin H., Chu W. (2016). Bacillus sp. QSI-1 Modulate quorum sensing signals reduce Aeromonas hydrophila level and alter gut microbial community structure in fish. Frontiers in Cellular and Infection Microbiology, 6, 184. DOI: 10.3389/fcimb.2016.00184
  24. Zokaeifar H., Balcázar J.L., Saad C.R., Kamarudin M.S., Sijam K., Arshad A., Nejat N. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology, 33 (4), 683–689. DOI: 10.1016/j.fsi.2012.05.027

Полная версия статьи