VolRC RAS scientific journal (online edition)
RuEn

Journal section "Fodder production, feeding of farm animals, and fodder technology"

Ammonia Management in Broiler Poultry Farming as a Tool to Maintain a High Level of Poultry Welfare

Ksenofontova A., Buryakov N.P., Ksenofontov D., Zaikina A.

Volume 7, Issue 2, 2024

Ksenofontova A.A., Buryakov N.P., Ksenofontov D.A., Zaikina A.S. (2024). Ammonia Management in Broiler Poultry Farming as a Tool to Maintain a High Level of Poultry Welfare. Agricultural and Livestock Technology, 7 (2). DOI: 10.15838/alt.2024.7.2.1 URL: http://azt-journal.ru/article/29938?_lang=en

DOI: 10.15838/alt.2024.7.2.1

Abstract   |   Authors   |   References
  1. Ageechkin A.P., Alekseev F.F., Aralov A.V. et al. (2010). Promyshlennoe ptitsevodstvo [Industrial Poultry Farming]. Sergiev Posad: VNITIP.
  2. Alloui N., Allou M.N., Bennoune O., Bouhentala S. (2013). Effect of ventilation and atmospheric ammonia on the health and performance of broiler chickens in summer. Journal of World’s Poultry Research, 3(2), 54–56.
  3. Al-Mashhadani E.H., Beck M.M. (1985). Effect of atmospheric ammonia on the surface ultrastructure of the lung and trachea of broiler chicks. Poultry Science, 64, 2056–2061.
  4. Amerah A.M., Ravindran V., Lentle R.G., Thomas D.G. (2007). Feed particle size: Implications on the digestion and performance of poultry World’s Poultry Science Journal, 63, 439–451. DOI: 10.1017/S0043933907001560.
  5. Amshel C.E., Fealk M.H., Phillips B.J., Caruso D.M. (2000). Anhydrous ammonia burns case report and review of the literature. Burns, 26(5), 493–497.
  6. Angel R., Powers W., Zamzow S., Applegate T. (2006). Dietary modifications to reduce nitrogen consumption and excretion in broilers. Poultry Science, 85, 25–25.
  7. Arwood R., Hammond J., Ward G.G. (1985). Ammonia inhalation. The Journal of Trauma, 25(5), 444–447.
  8. Ayoub M.M., Ahmed H.A., Sadek K.M. et al. (2019). Effects of liquid yucca supplementation on nitrogen excretion, intestinal bacteria, biochemical and performance parameters in broilers. Animals (Basel), 9(9)(12), 1097. DOI: 10.3390/ani9121097
  9. Bailey M.A., Hess J.B., Krehling J.T., Macklin K.S. (2021). Broiler performance and litter ammonia levels as affected by sulfur added to the bird’s diet. Journal of Applied Poultry Research, 30(2), 100159, DOI: 10.1016/j.japr.2021.100159
  10. Bassler A.W., Arnould C., Butterworth A. et al. (2013). Potential risk factors associated with contact dermatitis, lameness, negative emotional state, and fear of humans in broiler chicken flocks. Poultry Science, 92, 2811–2826. DOI: 10.3382/ps.2013-03208
  11. Bauck L. (1997). Avian Medicine and Surgery. 1st edition. Saunders.
  12. Bedford M. (1996). Interaction between ingested feed and the digestive system in poultry. Journal of Applied Poultry Research, 5, 86–95.
  13. Beker A., Vanhooser S.L., Swartzlander J.H., Teeter R.G. (2004). Atmospheric ammonia concentration effects on broiler growth and performance. Journal of Applied Poultry Research, 13, 5–9.
  14. Berg C. (2004). Pododermatitis and hock burn in broiler chickens. In: Weeks C.A., Butterworth A. (Eds.). Measuring and Auditing Broiler Welfare. Wallingford, UK: CABI Publishing.
  15. Berg C., Algers B. (2004). Using welfare outcomes to control intensification: The Swedish model. In: Weeks C.A., Butterworth A. (Eds.). Measuring and Auditing Broiler Welfare. Wallingford, UK: CABI Publishing.
  16. Bessei W. (2018). Impact of animal welfare on worldwide poultry production. World’s Poultry Science Journal, 74(2), 211–224. DOI: 10.1017/S0043933918000028
  17. Brambell R. (1965). Report of the Technical Committee to Enquire Into the Welfare of Animals Kept Under Intensive Livestock Husbandry Systems. London, UK: Her Majesty’s Stationery Office.
  18. Brink M., Janssens G.P.J., Delezie E. (2022). Does feeding more phases reduce ammonia concentrations from broiler litter? Animal Nutrition, 12(11), 152–159. DOI: 10.1016/j.aninu.2022.06.020
  19. Bruce D.W., Mcilroy S.G., Goodall E.A. (1990) Epidemiology of a contact-dermatitis of broilers. Avian Pathol, 19, 523–537.
  20. Bullis K.L., Snoeyenbos G.H., van Roekel H. (1950). A keratoconjunctivitis in chickens. Poultry Science, 29, 386–389.
  21. Buryakov N.P., Bannikov V.N., Ivanov A.S. (2008). Aktual'nye voprosy ptitsevodstva [Current Issues of Poultry Farming]. Yaroslavl: OOO “Khiton”.
  22. Bustamante-Marin X.M., Ostrowski L.E. (2017). Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol., 9(4), a028241. DOI: 10.1101/cshperspect.a028241
  23. Cabuk M., Alcicek A., Bozkurt M., Akkan S. (2004). Effect of Yucca schidigera and natural zeolite on broiler performance. International Journal of Poultry Science, 3, 651–654. DOI: 10.3923/ijps.2004.651.654S
  24. Caveny D.D., Quarles C.L., Greathouse G.A. (1981). Atmospheric ammonia and broiler cockerel performance. Poultry Science, 60, 513–516.
  25. Çavuşoğlu E., Petek M., Abdourhamane İ. M., Akkoc A., Topal E. (2018). Effects of different floor housing systems on the welfare of fast-growing broilers with an extended fattening period. Archives Animal Breeding, 61, 9–16. DOI: 10.5194/aab-61-9-2018
  26. Chen L., Cai T., Zhao C. et al. (2022). Atmospheric ammonia causes histopathological lesions, cell cycle blockage, and apoptosis of spleen in chickens. Canadian Journal of Animal Science, 102(3), 448–456. DOI: 10.1139/cjas–2021-0084
  27. Coetzee C.B. (2005). The Development of Water Quality Guidelines for Poultry in Southern Africa. PhD Thesis. Animal and Wildlife Sciences. University of Pretoria, South Africa.
  28. Collett S.R. (2012). Nutrition and wet litter problems in poultry. Animal Feed Science and Technology, 173(1–2), 65–75. DOI: 10.1016/j.anifeedsci.2011.12.013
  29. Costa A. (2017). Ammonia concentrations and emissions from finishing pigs reared in different growing rooms. Journal of Environmental Quality, 46(2), 255–260. DOI: 10.2134/jeq2016.04.0134
  30. Danbury T.C., Weeks C.A., Chambers J.P., Kestin S.C. (2000). Self-selection of the analgesic drug carprofen by lame broiler chickens. The Veterinary Record, 146, 307–311.
  31. Davis M.J. (2020) How to control foot-pad dermatitis in broiler flocks. WATTPoultry International, November, 26–28.
  32. Dawkins M.S. (2016). Animal welfare and efficient farming: Is conflict inevitable? Animal Production Science, 57, DOI: 10.1071/AN15383
  33. Dawkins M.S., Donnelly C.A., Jones T.A. (2004) Chicken welfare is influenced more by housing conditions than by stocking density. Nature, 22(427)(6972), 342–344. DOI: 10.1038/nature02226.
  34. De Jong I.C., Gunnink H., van Harn J. (2014). Wet litter not only induces footpad dermatitis but also reduces overall welfare, technical performance, and carcass yield in broiler chickens. Journal of Applied Poultry Research, 23(1), 51–58. DOI: 10.3382/japr.2013-00803
  35. De Jong I.C., van Harn J., Gunnink H., Hindle V.A., Lourens A. (2012). Footpad dermatitis in Dutch broiler flocks: Prevalence and factors of influence. Poultry Science, 91, 1569–1574. DOI: 10.3382/ps.2012-02156
  36. Dimski D.S. (1994). Ammonia metabolism and the urea cycle: Function and clinical implications. Journal of Veterinary Internal Medicine, 8, 73–78. DOI: 10.1111/j.1939-1676.1994.tb03201.x
  37. Dinev I., Denev S., Vashin I., Kanakov D., Rusenova N. (2019). Pathomorphological investigations on the prevalence of contact dermatitis lesions in broiler chickens. Journal of Applied Animal Research, 47, 129–134. DOI: 10.1080/09712119.2019.1584105
  38. Emous R.A., Winkel A., Aarnink A.J.A. (2019). Effects of dietary crude protein levels on ammonia emission, litter and manure composition, N losses, and water intake in broiler breeders. Poultry Science, 98(12), 6618–6625. DOI: 10.3382/ps/pez508
  39. Gamm U.A., Huang B.K., Mis E.K., Khokha M.K., Choma M.A. (2017). Visualization and quantification of injury to the ciliated epithelium using quantitative flow imaging and speckle variance optical coherence tomography. Scientific Reports, 8(7)(1), 15115. DOI: 10.1038/s41598-017-14670-9
  40. García-González M.C., Del Mar Delgado M. (2007). Characteristics of broiler litter using different types of materials. International Symposium on Air Quality and Waste Management for Agriculture. DOI: 10.13031/2013.23910.
  41. Gates R.S., Xin H., Casey K.D., Liang Y., Wheeler E.F. (2005). Method for measuring ammonia emissions from poultry houses. Journal of Applied Poultry Research, 14(3), 622–634. DOI: 10.1093/japr/14.3.622
  42. Goldstein D., Skadhauge E. (2000). Renal and Extrarenal Regulation of Body Fluid Composition. 10.1016/B978-012747605-6/50012-2
  43. Greene J.A., McCracken R.M., Evans R.T. (1985). A contact dermatitis of broilers – clinical and pathological findings. Avian Pathology, 14, 23–38.
  44. Gržinić G., Piotrowicz-Cieślak A., Klimkowicz-Pawlas A. et al. (2023). Intensive poultry farming: A review of the impact on the environment and human health. The Science of the Total Environment, 1(858)(3), 160014. DOI: 10.1016/j.scitotenv.2022.160014
  45. Güz B.C. (2022). Healthy Bones for Broiler Chickens. Wageningen University. DOI: 10.18174/553659
  46. Haslam S.M., Knowles T.G., Brown S.N. et al. (2007). Factors affecting the prevalence of foot pad dermatitis, hock burn and breast burn in broiler chicken. British Poultry Science, 48, 264–275. DOI: 10.1080/00071660701371341
  47. Hepworth P.J., Nefedov A.V., Muchnik I.B., Morgan K.L. (2011). Hock burn: An indicator of broiler flock health. The Veterinary Record, 168(11), 303–303. DOI: 10.1136/vr.c6897
  48. Hester P.Y. (1994). The role of environment and management on leg abnormalities in meat type fowl. Poultry Science, 73, 904–915.
  49. Hocking. P.M., Wu K. (2013). Traditional and commercial turkeys show similar susceptibility to foot-pad dermatitis and behavioural evidence of pain. British Poultry Science, 54, 281–288. DOI: 10.1080/00071668.2013.781265
  50. Hoer F.J. (2003). Mycotoxicoses. In: Saif Y.M. et al. (Eds.). Diseases of Poultry. Ames, Iowa: Iowa State University Press.
  51. Jarudi N.I., Golden B. (1973). Ammonia eye injuries. Journal of the Iowa Medical Society, 63(6), 260–263.
  52. Jones T.A., Donnelly C., Dawkins M.S. (2005) Environmental and management factors affecting the welfare of chickens on commercial farms in the United Kingdom and Denmark stocked at different densities. Poultry Science, 84(8), 1155–1165. DOI: 10.1093/ps/84.8.1155. PMID: 16156197
  53. Kristensen H.H., Wathes C.M. (2000). Ammonia and poultry welfare: A review. World’s Poultry Science Journal, 56(3), 235–245. DOI: 10.1079/WPS20000018
  54. Kyvsgaard N.C., Jensen H.B., Ambrosen T., Toft N. (2013). Temporal changes and risk factors for foot-pad dermatitis in Danish broilers. Poultry Science, 92(1), 26–32. DOI: 10.3382/ps.2012–02433
  55. Leeson S., Summers J.D. (2005). Commercial Poultry Nutrition. University Books.
  56. Liu Q.X., Zhou Y., Li X.M. et al. (2020). Ammonia induce lung tissue injury in broilers by activating NLRP3 inflammasome via Escherichia/Shigella. Poultry Science, 99(7), 3402–3410. DOI: 10.1016/j.psj.2020.03.019
  57. Liu Z., Wang L., Beasley D. et al. (2006). Effect of litter moisture content on ammonia emissions from broiler operations. In: Workshop on Agricultural Air Quality. Washington, USA.
  58. Martland M.F. (1985). Ulcerative dermatitis dm broiler chickens: The effects of wet litter. Avian Pathol, 14(3), 353–364. DOI: 10.1080/03079458508436237
  59. Mayne R.K. (2005). A review of the aetiology and possible causative factors of foot pad dermatitis in growing turkeys and broilers. World’s Poultry Science Journal, 61, 256–267. DOI: 10.1079/WPS200458
  60. McCluggage D. (1997). Avian Medicine and Surgery. 1st edition. Saunders.
  61. McCubbin D.R., Apelberg B.J., Roe S., Divita F. (2002). Livestock ammonia management and particulate-related health benefits. Environmental Science and Technology, 36(6), 1141–1146. DOI: 10.1021/es010705g
  62. Meluzzi A., Sirri F. (2009). Welfare of broiler chicken. Italian Journal of Animal Science, 8, 161–173.
  63. Meseret S. (2016). A review of poultry welfare in conventional production system. Livestock Research for Rural Development, 28(12), 234. Available at http://www.lrrd.org/lrrd28/12/mese28234.html
  64. Miles D.M., Miller W.W., Branton S.L., Maslin W.R., Lott B.D. (2006). Ocular responses to ammonia in broiler chickens. Avian Diseases, 50(1), 45–49. DOI: 10.1637/7386-052405R.1
  65. Mottet A., Tempio G. (2017). Global poultry production: Current state and future outlook and challenges. World’s Poultry Science Journal, 73(2), 245–256. DOI: 10.1017/S0043933917000071
  66. Moura D.J., Nääs I.A., Pereira D.F., Silva R.B.T.R., Camargo G.A. (2006). Animal welfare concepts and strategy for poultry production: A review. Brazilian Journal of Poultry Science, 8(3), 137–148. DOI: 10.1590/S1516-635X2006000300001
  67. Murphy T., Cargill C., Rutley D., Stott P. (2012). Pig-shed air polluted by α-haemolytic cocci and ammonia causes subclinical disease and production losses. The Veterinary Record, 4(171)(5), 123. DOI: 10.1136/vr.100413
  68. Nagaraj M., Wilson C.A.P, Saenmahayak B., Hess J.B., Bilgili S.F. (2007). Efficacy of a litter amendment to reduce pododermatitis in broiler chickens. Journal of Applied Poultry Research, 16, 255–261.
  69. Nagaraja K.V., Emery D.A., Jordan K.A., Newman J.A., Pomeroy B.S. (1983). Scanning electron microscopic studies of adverse effects of ammonia on tracheal tissues of turkeys. American Journal of Veterinary Research, 44, 1530–1536.
  70. Olanrewaju H.A., Thaxton J.P., Dozier W.A. et al. (2008). Interactive effects of ammonia and light intensity on hematochemical variables in broiler chickens. Poultry Science, 87(7), 1407–1414. DOI: 10.3382/ps.2007-00486
  71. Platt S., Buda S., Budras K.D. (2001). The influence of Biotin on foot pad lesions in turkey poults. In: Proceedings 8th Symposium: Vitamine und Zusatzstoffe in der Ernahrung von Mensch und Tier. Germany.
  72. Ryabinina E.V., Mel'nik V.A., Rudaya S.V. (2021). The influence of various methods of litter processing on the content of harmful gases in the air of the poultry house. Aktual'nye problemy intensivnogo razvitiya zhivotnovodstva, 24(2), 292–298 (in Russian).
  73. Sacranie A., Paul I., Mikkelsen L., Mingan C. (2007). Occurrence of reverse peristalsis in broiler chickens. Australian Poultry Science Symposium, 19, 161–164.
  74. Sainsbury D. (2000). Poultry Health and Management: Chickens, Ducks, Turkeys, Geese, Quail. 4th edition. London: Blackwell Science Ltd.
  75. Schefferle H.E. (1965). The decomposition of uric acid in built up poultry litter. Journal of Applied Bacteriology, 28(3), 412–420. DOI: 10.1111/j.1365-2672.1965.tb02171.x
  76. Schneider A.F. et al. (2017). Zeólitas naturais na dieta de frangos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69(1), 191–197. DOI: 10.1590/1678-4162-8717
  77. Schneider A.F., Zimmermann O.F., Gewehr C.E. (2017). Zeolites in poultry and swine production. Ciência Rural, 47, 1–8. DOI: 10.1590/0103-8478cr20160344
  78. Seedorf J. (2013). Impact of atmospheric ammonia on livestock animals – a mini-review. Berliner und Münchener tierärztliche Wochenschrift, 126, 96–103. DOI: 10.2376/0005-9366-126-96
  79. Shah S.B., Grimes J.L., Oviedo-Rondón E.O., Westerman P.W. (2014). Acidifier application rate impacts on ammonia emissions from US roaster chicken houses. Atmospheric Environment, 92, 576–583. DOI: 10.1016/j.atmosenv.2013.01.044
  80. Shepherd E.M., Fairchild B.D. (2010). Footpad dermatitis in poultry. Poultry Science, 89(10), 2043–2051. DOI: 10.3382/ps.2010-00770
  81. Smith J.H., Wathes C.M., Baldwin B.A. (1996). The preference of pigs for fresh air over ammoniated air. Applied Animal Behaviour Science, 49, 417–424. DOI: 10.1016/0168-1591(96)01048-9
  82. Stoute S.T., Bickford A.A., Walker R.L., Charlton B.R. (2009). Mycotic pododermatitis and mycotic pneumonia in commercial turkey poults in northern California. Journal of Veterinary Diagnostic Investigation, 21(4), 554–557. DOI: 10.1177/104063870902100424
  83. Such N., Pál L., Strifler P., Horváth B. et al. (2021). Effect of feeding low protein diets on the production traits and the nitrogen composition of excreta of broiler chickens. Agriculture, 11(8), 781. DOI: 10.3390/agriculture11080781
  84. Swelum A.A., El-Saadony M.T., Abd El-Hack M.E. et al. (2021). Ammonia emissions in poultry houses and microbial nitrification as a promising reduction strategy. Science of the Total Environment, 781, 146978. DOI: 10.1016/j.scitotenv.2021.146978
  85. Taira K., Nagai T., Obi T., Takase K. (2014). Effect of litter moisture on the development of footpad dermatitis in broiler chickens. Journal of Veterinary Medical Science, 76(4), 583–586. DOI: 10.1292/jvms.13-0321
  86. Trukhachev V.I., Yuldashbaev Yu.A., Svinarev I.Yu. et al. (2022). Sovremennoe sostoyanie i perspektivy razvitiya zhivotnovodstva Rossii i stran SNG [Current State and Prospects for the Development of Animal Husbandry in Russia and the CIS Countries]. Moscow: OOO “Megapolis”.
  87. Van Emous R.A., van Krimpen M.M. (2019). Effects of nutritional interventions on feathering of poultry – a review. In: Olukosi O.A. et al. (Eds.). Poultry Feathers and Skin: The Poultry Integument in Health and Welfare. DOI: 10.1079/9781786395115.0133
  88. Verbitsky S. (2019). Use of bedding in hen house. Zhivotnovodstvo Rossii, 11, 17–21 (in Russian).
  89. Vieira A.M.C., Leandro R.A., Demétrio C.G.B., Molenberghs G. (2011). Double generalized linear model for tissue culture proportion data: A Bayesian perspective. Journal of Applied Statistics, 38, 1717–1731.
  90. Vilela M.d.O., Gates R.S., Souza C.D.F., Teles Junior C.G.d.S., Sousa F.C. (2020). Nitrogen transformation stages into ammonia in broiler production: Sources, deposition, transformation and emission to environment. DYNA, 87, 221–228. DOI: 10.15446/dyna.v87n214.83318
  91. Walter V. (2022). Towards a comparative study of animal consciousness. Biological Theory, 17(12). DOI: 10.1007/s13752-022-00409-x
  92. Wang G., Liu Q., Zhou Y., Feng J., Zhang M. (2022). Effects of different ammonia concentrations on pulmonary microbial flora, lung tissue mucosal morphology, inflammatory cytokines, and neurotransmitters of broilers. Animals, 12(3), 261. DOI: 10.3390/ani12030261
  93. Wang H., Zhang Y., Qi H. et al. (2020). The inflammatory injury of heart caused by ammonia is realized by oxidative stress and abnormal energy metabolism activating inflammatory pathway. Science of The Total Environment, 742. 140532. DOI: 10.1016/j.scitotenv.2020.140532
  94. Wang Y.M., Meng Q.P., Guo Y.M. et al. (2010). Effect of atmospheric ammonia on growth performance and immunological response of broiler chickens. Journal of Animal and Veterinary Advances, 9(22), 2802–2806. DOI:10.3923/javaa.2010.2802.2806
  95. Weber Wyneken C.W., Sinclair A., Veldkamp T., Vinco L.J., Hocking P.M. (2015). Footpad dermatitis and pain assessment in turkey poults using analgesia and objective gait analysis. British Poultry Science, 56, 522–530. DOI: 10.1080/00071668.2015.1077203
  96. Wei F.X., Hu X.F., Xu B. et al. (2015). Ammonia concentration and relative humidity in poultry houses affect the immune response of broilers. Genetics and Molecular Research, 14(2), 31603169. DOI: 10.4238/2015.April.10.27
  97. Wu Y.N., Yan F.F., Hu J.Y. et al. (2017). The effect of chronic ammonia exposure on acute-phase proteins, immunoglobulin, and cytokines in laying hens. Poultry Science, 96, 1524–1530.
  98. Xiong Y., Tang X.F., Meng Q.S., Zhang H.F. (2016). Differential expression analysis of the broiler tracheal proteins responsible for the immune response and muscle contraction induced by high concentration of ammonia using iTRAQ-coupled 2D LC-MS/MS. Science China. Life Sciences, 59, 1166–1176.
  99. Zhou Y., Liu Q.X., Li X.M. et al. (2020). Effects of ammonia exposure on growth performance and cytokines in the serum, trachea, and ileum of broilers. Poultry Science, 99(5), 2485–2493. DOI: 10.1016/j.psj.2019.12.063
  100. Zhou Y., Zhang M., Liu Q., Feng J. (2021). The alterations of tracheal microbiota and inflammation caused by different levels of ammonia exposure in broiler chickens. Poultry Science, 100(2), 685–696. DOI: 10.1016/j.psj.2020.11.026
  101. Zhou Y., Zhang M., Zhao X., Feng J. (2021). Ammonia exposure induced intestinal inflammation injury mediated by intestinal microbiota in broiler chickens via TLR4/TNF-α signaling pathway. Ecotoxicology and Environmental Safety, 226, 112832. DOI: 10.1016/j.ecoenv.2021.112832

Article views

all: , this year: , this month: , today:

Article downloads

all: , this year: , this month: , today: